Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells.
نویسندگان
چکیده
Ovarian cancer is currently the most lethal gynecologic malignancy in developed countries, and paclitaxel is a cornerstone in the treatment of this malignancy. Unfortunately, the efficacy of paclitaxel is limited by the development of drug resistance. Clinical paclitaxel resistance is often associated with ABCB1 (MDR1) overexpression, and in vitro paclitaxel resistance typically demonstrates overexpression of the ABCB1 gene. In this study, we demonstrate that paclitaxel-resistant cell lines overexpress both ABCB1 and ABCB4 (MDR3). To evaluate the role of these transporters in paclitaxel-resistant ovarian cancer cells, small interference RNAs (siRNAs) were used to target ABCB1 and ABCB4 RNA in the paclitaxel-resistant SKOV-3TR and OVCAR8TR ovarian cancer cell lines. Treatment of these lines with either chemically synthesized siRNAs or transfection with specific vectors that express targeted siRNAs demonstrated decreased mRNA and protein levels of ABCB1 or ABCB4. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays of siRNA-treated cells demonstrated 7- to 12.4-fold reduction of paclitaxel resistance in the lines treated with the synthesized siRNA of ABCB1 and 4.7- to 7.3-fold reduction of paclitaxel resistance in the cell lines transfected with siRNA of ABCB1 expressing vectors. ABCB4 siRNA-treated cell lines showed minor reduction in paclitaxel resistance. These results indicate that siRNA targeted to ABCB1 can sensitize paclitaxel-resistant ovarian cancer cells in vitro and suggest that siRNA treatment may represent a new approach for the treatment of ABCB1-mediated drug resistance.
منابع مشابه
CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line
Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...
متن کاملRegulation of multidrug resistance 1 expression by CDX2 in ovarian mucinous adenocarcinoma
Epithelial ovarian cancer is an aggressive gynecological malignancy with a high mortality rate. Resistance against chemotherapeutic agents often develops in ovarian cancer patients, contributing to high recurrence rates. The multidrug resistance 1 (MDR1/ABCB1) gene encodes P-glycoprotein, which affects the pharmacokinetic properties of anticancer agents. We previously reported that the Caudal-r...
متن کاملRNAi Induced Inhibition of MRP1 Expression and Reversal of Drug Resistance in Human Promyelocytic HL60 Cell Line
Multidrug resistance (MDR) is a complex phenomenon in which many different genes regulating drug transport, cellular repair, detoxification and drug metabolism are involved. Nevertheless, in most drug resistant cell lines and cancer patients up-regulation of ABC-transporter genes such as MDR associated Protein (MRP1) gene could be at the basis of the drug resistance phenotype. We aimed to decre...
متن کاملMRP7/ABCC10 expression is a predictive biomarker for the resistance to paclitaxel in non-small cell lung cancer.
We used the paclitaxel-resistant human small cell lung cancer subline PC-6/TAX1-1, selected from PC-6 cells by paclitaxel, to test whether MRP7/ABCC10 (ABCC10) confers paclitaxel resistance. We found that gene expression of both ABCB1/MDR1 (ABCB1) and ABCC10 was higher in PC-6/TAX1-1 cells than in PC-6 cells. The expression levels of ABCC10 showed a significant inverse correlation with paclitax...
متن کاملMDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer
Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 3 7 شماره
صفحات -
تاریخ انتشار 2004